🧠 공부/통계학

(3)로지스틱 회귀분석(Logistic regression): 파이썬 실습(Python)

소리331 2024. 4. 14. 22:54
반응형

코드 실습

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

import 문은 위와 같다! 

- `train_test_split`: X와 y 값에 대해 input을 넣으면 이를 test 용과 train용으로 나눠주는 역할의 함수이다. random_state값을 fix 하게 되면 seed 가 고정되어서 결과를 동일하게 나오게 할 수 있다. 

 - accruracy_score : 알다시피 정확도이다! 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

데이터를 train과 test 용으로 나누어 준다. 

model = LogisticRegression()
model.fit(X_train, y_train)

학습 자체는 굉장히 간단하다! 데이터의 처리 또한 중요하다는 것을 다시 한 번 상기하자! 

y_pred = model.predict(X_test)

이는 test 데이터용 x 값을 바탕으로 y 값을 예측한 값인데, 이에 대해 y_pred 값이 실제 y_test 값과 같은지 다른지 여부를 판단하여 accuracy 를 판단한다. 

accuracy = accuracy_score(y_test, y_pred)

마지막으로 accuracy를 확인해서 정확도를 확인한다! 이는 confusion matrix (혼동행렬)에서 구할 수 있는 값이다.

 

 

 

 

(1)로지스틱 회귀분석(Logistic regression)이 가지고 있는 이야기: Binary classification, 오즈비와 로짓변

(참고: 나 문과임) (이번글의 키워드: 오즈비, 확률, 일반회귀방정식!) 로지스틱 회귀분석이 풀고자 하는 문제 : 결과값 P를 통한 이진분류 Binary Classification 로지스틱 회귀식의 결과값은 확률 P이

great-woman-hoseung.tistory.com

 

 

(2)로지스틱 회귀분석(Logistic regression)이 가지고 있는 이야기: MLE(Maximum Likelihood Estimation)& GLM & 손

이번 글에서는... 로지스틱 모형에서 회귀계수를 구하는 방법 GLM과 링크함수 최대우도법 로지스틱 회귀모형의 손실함수 왜 최대우도추정법(MLE)로 회귀 계수를 구하는 걸까? 선형 회귀분석은 최

great-woman-hoseung.tistory.com

 

반응형